Decadal Variabilities of the Upper Layers of the Subtropical North Atlantic: An Ocean Model Study

نویسندگان

  • Tal Ezer
  • TAL EZER
چکیده

Numerical simulations of the Atlantic Ocean during the period 1950 to 1989, using a sigma coordinate, free surface numerical model, show long-term variabilities in the upper ocean subtropical gyre similar to those obtained from observations. The simulations show how westward propagating planetary waves, originated in the eastern North Atlantic, affect interdecadal variabilities of ocean properties such as the Bermuda sea level, the Gulf Stream position and strength, and subsurface temperature anomalies in the western North Atlantic. Special attention is given to the dramatic sea level drop at Bermuda in the early 1970s, which is accompanied by cooling of subsurface layers in the western North Atlantic and a northward shift and weakening of the Gulf Stream. Following these events, between 1970 and 1980, the cold temperature anomalies in the upper layers of the western North Atlantic slowly propagated eastward and downward; the strongest propagating signal in the model is found at 200-m depth, suggesting that advection of anomalies downstream by the Gulf Stream current and changes in winter mixing are involved. Significant correlations were found between the sea level anomalies at Bermuda and sea level anomalies in the eastern North Atlantic up to eight years earlier. Sensitivity experiments with different atmospheric forcing fields are used to study the ocean response to observed sea surface temperature and wind stress anomalies. It is shown that on decadal timescales, the ocean model responds in a linear fashion to the combined effect of SST and wind stress anomalies, a fact that might be exploited in future climate prediction studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulated interannual to decadal variability irk the tropical and sub-tropical North Atlantic

The dominant pattern of tropical and subtropical North Atlantic sea surface temperature (SST) anomalies simulated in the GFDL coupled ocean-atmosphere model is identified and compared to observations. The spatial pattern and temporal variability of that pattern resemble observational results. On interannual time scales it is shown that anomalous surface heat fluxes, consistent with variations i...

متن کامل

An ocean model’s response to North Atlantic Oscillation-like wind forcing

The response of the Atlantic Ocean to North Atlantic Oscillation (NAO)-like wind forcing has been investigated using an ocean-only general circulation model coupled to an atmospheric boundary layer model. A series of idealized experiments was performed to investigate the interannual to multi-decadal frequency response of the ocean to a winter wind anomaly pattern. South of 30 N, the sea surface...

متن کامل

A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia?

Simulations performed with Ocean–Atmosphere General Circulation Models (OAGCM) under the Climate Model Intercomparison Project, phase 5 (CMIP5) (Taylor et al. 2012), provide climate predictions for the upcoming 100 years (the so-called radiative concentration pathways emission scenarios). However, CMIP simulations suffer from severe limitations in predicting climate at a shorttime horizon (< 10...

متن کامل

North Atlantic circulation and variability, reviewed for the CNLS conference

The circulation and water mass structure of the North Atlantic are reviewed, with emphasis on the large-scale overturning cell which produces North Atlantic Deep Water (NADW). Properties and transports for its major components (Nordic Seas Overflow Water, Labrador Sea Water, Mediterranean Water, Antarctic Intermediate Water and Antarctic Bottom Water) are reviewed. The transport estimates and p...

متن کامل

Contributions of Atlantic Ocean to June-August Rainfall over Uganda and Western Kenya

This study investigates the contributions of Atlantic Ocean to June-August rainfall over Uganda and western Kenya (KU). The study has utilized the datasets including precipitation from the Global Precipitation Climatology Centre, North Atlantic Oscillation Index (NAOI), South Atlantic Ocean Dipole Index (SAODI), ERA-interim reanalysis, and the Atlantic Ocean Sea Surface Temperature (SST). Singu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999